Student Number:	
Class:	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2014

MATHEMATICS EXTENSION 2

General Instructions:

- · Reading Time: 5 minutes.
- Working Time: 3 hours.
- · Write in black pen.
- · Board approved calculators & templates may be used
- · A Standard Integral Sheet is provided.
- In Question 11 16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100

Section I: 10 marks

- · Attempt Question 1 10.
- Answer on the Multiple Choice answer sheet provided.
- Allow about 15 minutes for this section.

Section II: 90 Marks

- · Attempt Question 11 16
- Answer on lined paper provided. Start a new page for each new question.
- Allow about 2 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Nnmber.

Section 1

10 marks Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- 1. If z = 1 + 2i and w = 3 i, what is the value of $z \overline{w}$?
 - (A) 3i-2
 - (B) 4+3i
 - (C) l-2
 - (D) 4+i
- 2. Which of the following is an expression for? $\int \frac{\cos^3 x + \sin^3 x}{\cos x \sin x} dx$
 - (A) $x + \frac{1}{2}\cos 2x + c$
 - (B) $x = \frac{1}{2}\cos 2x + c$
 - (C) $x + \frac{1}{2}\sin^2 x + c$
 - (D) $x = \frac{1}{2}\sin^2 x + c$
- 3. The equation of the tangent to $xy^3 + 2y = 4$ at the point (2, 1) is
 - (A) x+8y=10
 - (B) x-8y=10
 - (C) x+8y=-10
 - (D) x-8y=-10

The graph of y = f(x) is shown below.

Which of the following graphs best represents y = f(|x|)?

(B)

(C)

Ext 2 James Ruse Agricultural Trial 2014

5. The point P(acos θ , $b \sin \theta$) lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a>b>0

What is the equation of the normal at P?

- (A) $\frac{ax}{\cos\theta} \frac{by}{\sin\theta} = a^2 b^2$
- (B) $\frac{ax}{\cos\theta} + \frac{by}{\sin\theta} = a^2 + b^2$
- (C) $\frac{x}{a} \sec \theta \frac{y}{b} \tan \theta = 1$
- (D) $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$
- 6. What is the multiplicity of the root x=1 of the equation $3x^5-5x^4+5x-3=0$
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- 7. Without evaluating the integrals which one of the following will give an answer of zero?
 - (A) $\int_{-\pi}^{\pi} \frac{\cos^3 \theta + 1}{\cos^2 \theta} d\theta$
 - (B) $\int_{-1}^{1} (x^2 1)(1 x^2)^3 dx$
 - (C) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 x \cos x \, dx$
 - (D) $\int_{-2}^{2} |x|^2 4|dx$

Ext 2 James Ruse Agricultural Trial 2014

8. The base of a solid is the circle $x^2 + y^2 = 1$. Every cross section of the solid taken perpendicular to the x axis is a right angled, isosceles triangle with its hypotenuse lying in the base of the solid. Which of the following is an expression for the volume V of the solid?

(A)
$$\int_{-1}^{1} (1 - x^2) dx$$

(B)
$$2\int_{-1}^{1} (1+x^2) dx$$

(C)
$$4\int_{-1}^{1} (1-x^2) dx$$

(D)
$$\frac{1}{2} \int_{-1}^{1} (1 - x^2) dx$$

9. A particle of mass m is moving horizontally in a straight line. Its motion is opposed by a force of magnitude mk $(v+v^2)$ Newtons when its speed is v ms⁻¹ (where k is a positive constant). At time t seconds the particle has displacement x metres from a fixed point O on the line and velocity v ms⁻¹. Which of the following is an expression for x in terms of v?

$$(A) \qquad \frac{1}{k} \int \frac{1}{1+v} dv$$

(B)
$$\frac{1}{k} \int \frac{1}{v(l+v)} cv$$

(C)
$$-\frac{1}{k}\int \frac{1}{v(1+v)} dv$$

$$(D) = -\frac{1}{k} \int \frac{1}{1+v} dv$$

Four digit numbers are formed from the digits 1, 2, 3 and 4. Each digit is used once only. The sum of all the numbers that can be formed is?

Section II

90 marks Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question on a SEPARATE sheet of paper. Extra paper is available. In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11

a) Find
$$\int \frac{dx}{\sqrt{6x-x^2}}$$

b) Show that
$$\int_{2}^{4} \frac{dx}{x\sqrt{x-1}} = \frac{\pi}{6}$$

c) Find
$$\int e^x \sin x \, dx$$

d) Draw a diagram to illustrate the locus of the points z on the Argand diagram such that:

(i)
$$|z - \overline{z}| \le 1$$
 and $|z - 1| \le 2$

(ii)
$$Arg\left\{\frac{z-1}{z+1}\right\} = \frac{\pi}{4}$$

e) Show by geometrical means or otherwise that if z_1 and z_2 are complex numbers such that $|z_1| = |z_2|$, then $\frac{z_1 + z_2}{z_1 - z_2}$ is purely imaginary.

Question 12 (Start a new page)

(a) The diagram below shows the graph of $f(x) = e^x - 2$

On separate diagrams sketch the following graphs, in each case showing the intercepts on the axes and the equations of the asymptotes.

(i)
$$y = (f(x))^2$$

(ii)
$$y = \log_{y} f(x)$$

(iii)
$$y = \frac{1}{f(x)}$$

$$(iv) y^2 = |f(x)|$$

- (b) (i) Show that $4x^2+9y^2+16x+18y-11=0$ represents an ellipse.
 - (ii) Find the eccentricity and hence the coordinates of its foci and the equation of its directrices.

Ext 2 James Ruse Agricultural Trial 2014

(c)

In the diagram above, $P\left(3p, \frac{3}{p}\right)$ and $Q\left(3q, \frac{3}{q}\right)$ are variable points on the rectangular

hyperbola

xy = 9. The perpendicular distance from the origin to the chord PQ is $\sqrt{5}$ units. Let M be the midpoint of the chord PQ.

(i) Show that the chord PQ has the equation
$$x+pqy=3(p+q)$$

(ii) Using the perpendicular distance formula, or otherwise, show that
$$9(p+q)^2 \equiv 5(1+p^2q^2)$$

$$y^2 = \frac{5x^2}{4x^2 - 5}$$

Question 13 (Start a new page)

- (a) (i) Use the substitution $x=10\sqrt{2}\sin\theta$ to show that $\int_{-10}^{10} \sqrt{200-x^2} dx = 100 + 50\pi$
 - (ii) Use a geometrical argument to verify the result in part (i)
 - (iii) A mould for a model railway tunnel is made by rotating the region bounded by the curve $y = \sqrt{200 x^2}$ and the x-axis between the lines x=-10 and x=10 through 180° about the line x=100 (where all the measurements are in cm). Use the method of cylindrical shells to show that the volume Vcm³ of the tunnel is given by $\pi \int_0^{10} (100 x) \sqrt{200 x^2} \, dx$.

Hence find the volume of the tunnel in m³ correct to 2 significant figures.

(b)

The curves $y = x^2 - 4$ and $y = \frac{1}{x}$ intersect at the points P, Q, R where $x = \alpha$, $x = \beta$, $x = \gamma$

- (i) Show that α, β, γ are the roots of the equation $x^3 4x 1 = 0$
- (ii) Find a polynomial equation with integer coefficients which has roots $\alpha^2, \beta^2, \gamma^2$.
- (iii) Find a polynomial equation with integer coefficients which has roots $\frac{1}{\alpha^2}, \frac{1}{\beta^2}, \frac{1}{\gamma^2}$.
- (iv) Hence find the numerical value of $OP^2 + OQ^2 + OR^2$

Question 14 (Start a new page)

(a) Figure 1 below shows a scale model of the volcano Mt Snaefellsjökull The base of the model is elliptical in shape with the axes 60cm by 40cm reducing uniformly to a circle of radius 12cm at the top.

The hollow core of the model has circular cross sections with a circle of radius 6cm at the base rising uniformly to a circle of radius 12cm at the top. The model is 24cm high.

Figure 2 shows the top view of the cross sectional area of the volcano

Figure 2

- (i) Show that at height h, the length of the semi-major axis is given by $a = 30 \frac{3}{4}h$
- (ii) Show that the cross sectional slice at height h is given by

$$A = \frac{\pi}{16}(9024 - 448h + 3h^2)$$

You can assume the area of an ellipse with semi-major axis a and semi-minor axis b is given by πab

(iii) Find the volume of the scale model of Mt Snaefellsjökull

1

2

3

Question 14 continued

(b) (i) Show that if n is an even positive integer, then

$$(1+x)^{n} + (1-x)^{n} = 2\sum_{k=0}^{n/2} {n \choose 2k} x^{2k}$$

- (ii) An alphabet consists of three letters A, B and C
 - (I) Show that the number of words of 4 letters containing exactly 2B's is $\binom{4}{2}x2^2$

(II) Hence, or otherwise, show that if n is an even positive integer then the number of words of n letters with zero or an even number of B's is given by

$$\frac{1}{2}(3^n+1)$$

2

(c) Three men Bill, Garry and Jason observe a vertical tower.

Bill stands due North of the tower, and sees its top at an angle of elevation of α° Garry stands due East of the tower, and sees its top at an angle of elevation of β° Jason stands on a line from Bill to Garry, exactly half way between them.

If Jason observes the top of the tower at an angle of elevation of θ° .

Show that
$$\cot \theta^{\circ} = \frac{1}{2} \sqrt{\cot^2 \alpha^{\circ} + \cot^2 \beta^{\circ}}$$

Ext 2 James Ruse Agricultural Trial 2014

Question 15 (Start a new page)

(a) Let
$$I_n = \int_{1}^{2} \left(1 - \frac{1}{x}\right)^n dx$$
 for $n = 1, 2, 3, \dots$

(i) Show that $\frac{1}{n+1}I_{n+1} = \frac{1}{n}I_n - \frac{1}{n(n+1)2^n}$ for n = 1, 2, 3,

(ii) Hence show that
$$\frac{1}{n+1}I_{n+1} = I_1 - \sum_{r=1}^{n} \frac{1}{r(r+1)2^r}$$

- (i) Show that $\sum_{r=1}^{n} \frac{1}{r(r+1)2^r} = (1 \log_e 2) \frac{1}{n+1} I_{n+1}$ and hence find the limiting sum of the series $\frac{1}{1 \times 2 \times 2^1} + \frac{1}{2 \times 3 \times 2^2} + \frac{1}{3 \times 4 \times 2^3} + \dots$
- (b) Let α be the complex root of the polynomial $z^7 = 1$ with the smallest positive argument.

Let
$$\theta = \alpha + \alpha^2 + \alpha^4$$
 and $\phi = \alpha^3 + \alpha^5 + \alpha^6$

(i) Show that
$$\theta + \phi = -1$$
 and $\theta \phi = 2$

(ii) Write a quadratic equation whose roots are θ and ϕ .

Hence show that $\theta = -\frac{1}{2} + \frac{i\sqrt{7}}{2}$ and $\phi = -\frac{1}{2} - \frac{i\sqrt{7}}{2}$

(iii) Show that
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} - \cos \frac{\pi}{7} = -\frac{1}{2}$$

Question 16 (Start a new page)

(a) The diagram below shows a point P rotating in a circle of radius 1 metre, whose centre is at O.

AB is a diameter produced to C such that OC = 2 metres.

The angular velocity of P about O is given by $\dot{\theta} = \pi \text{ rad/sec.}$ ($\theta = \angle POB$)

- (i) Find the angular velocity of P about A and about B.
- (ii) If $\angle PCO = \alpha$, show that $\sin(\alpha + \theta) = 2\sin\alpha$.
- (iii) Hence find the angular velocity of P about C at the instant when $\theta = \frac{\pi}{2}$.
- (b) The circular bend on a bike track has a constant radius of 20 metres and is banked at a constant angle of 30° to the horizontal. A bicycle rider can safely negotiate the bend if the maximum sideways thrust F, up or down the slope is at most one-tenth of the normal reaction N. By resolving the forces vertically and horizontally, show that the range of speeds V, correct to two decimal places and in metres per second, at which the bend can be safely negotiated, is $9.50 \le V \le 11.99$. Take $g = 10 \text{m/s}^2$.

Multiple Choice Answers

(2)
$$\int \frac{(\cos x + \sin x)(\cos^2 x - \cos x \sin x + \sin^2 x)}{(\cos x + \sin x)} = a \sin x - a^2 x$$

$$= \int 1 - \cos x \sin x \, dx$$

$$= \chi - \frac{5}{7} \sin^2 \chi + c \quad (D)$$

$$\frac{dy}{dn} = -\frac{1}{8}$$

$$y - 1 = -\frac{1}{2}(n - 1)$$

$$= \frac{1}{(1)} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} \left(-\frac{1}{2} - \frac{1}{2} + \frac{1}{2}$$

(a)
$$P'(x) = 17x^4 - 10x^3 + 5$$

 $P''(x) = 60x^3 - 60x$
 $P''(x) = 0$ $P'''(x) = 0$
 $P'''(x) = 180x - 60$ $P'''(x) \neq 0$
 $P'''(x) = 180x - 60$ $P'''(x) \neq 0$

MATHEMATICS Extension 2: Question Suggested Solutions	Marks	Marker's Comments
$\int \frac{dx}{\sqrt{6x-x^2}} dx = \int \frac{dx}{\sqrt{9-(x^2-6x+9)}}$	0	I mark of for each error
$= \sqrt{39 - (x-3)}$ $= 510 \times 3 + C$		
y let $u=\sqrt{x-1}$ when $x=2$, $u=1$ $\frac{du}{dx} = \frac{1}{2\sqrt{x-1}}$ when $x=4$, $u=\sqrt{3}$	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$= 2 \left[\frac{1}{4} - \frac{1}{4} \right]$ $= 3 \left(\frac{1}{3} - \frac{1}{4} \right)$	30	
$=2\times 1$		
The $u = \sin x$ and $u = \cos x$ $v = e^{x}$		
I=exsinc-fexcosxdoc	1	
DOW let u=cosx du ex du = 5inc v=ex		
I = exsinx - excosx + fexsinxdx	0	*
bt I = Jerginzdz	30	
I= = (e2(5)025-ex605x)	BU	

MATHEMATICS Extension 2: Question Suggested Solutions	Marks	Marker's Comments
$ x+yi-(x+yi) \le 1$ and $ z-1 \le 2$ (1,p) radius 2.		* I of for each error.
		1 for circle (lightly drawn
		I for correct region shaded.
$\frac{1}{2} \frac{arg(z-1) - arg(z+1) = T_q}{arg(z-1) - arg(z+1) = T_q}$		(most students forget yz-1/2). I for open circ
(10) Circle stending on (-1,0) and (10)		and both lines
$\frac{e}{A^{(2)}} = \frac{e}{B^{(2)}} = \frac{e}{B^{(2)}$		2 (1)
OABC is a parallelogram OA = OC (as z = z=)	0	lint)
OB and AC intersect at 90° (diagonals of an intersect	horrib	adjacent)
$arg(z_{1}+z_{2}) - arg(z_{1}-z_{2}) = \pm \sqrt{2}$ $arg(z_{1}+z_{2}) - + \sqrt{2}$ $2(z_{1}+z_{2}) - 2(z_{2}+z_{2}) = \pm \sqrt{2}$		0
Ztz Breth wagin	4.	or could disor

of toold have been done algebraically

	sion 2: Question.	Walan
Suggested Solutions	Marks Awarded	Marker's Comments
79= 440	- 1	-if you left of an intercept then = 0 mks
$\int_{x=\ln 2}^{y=x} \int_{y=\ln f(x)}^{y=x}$		-a lot of stud forgot the asympton y=x, -if you left of the x-intercept then you lost the
) The man		both asymptote
7 = f(x)		both asymptote
	=- ^V 2	shape + interco

MATHEMATICS Extension 2: Que Suggested Solutions	Marks Awarded	Marker's Comments
a)(iv) $y^2 = f(x) $ $$		all 3 intercepts + horizontal asy
$\frac{1}{\sqrt{102}}$		shape of both graphs
b) (1) $4(x^2 + 4x + 4) + 9(y^2 + 2y + 1) = 11 + 16 + 6$ $4(x+2)^2 + 9(y+1)^2 = 36$ $(x+2)^2 + (y+1)^2 = 1$ which is in the form $x_2^2 + y_2^2 = 1$ and so t is an ellipse		
$b^{2} = a^{2}(1 - e^{2})$ $4 = 9(1 - e^{2})$ $e^{2} = \frac{5}{9}$ $e = \frac{5}{3}$ as $(0 < e < 1)$	1	
direct rices? $x = -2 \pm \frac{9}{15}$ $\frac{9}{6} = \frac{3}{55/3} = \frac{9}{15}$ focus: $(-2+55, -1)$ and $ae = 3\times 55/3 = 55$ $(-2-55, -1)$	30	had to get both correct to get the 2nd ma

MATHEMATICS Extension 2: Question! 2. Suggested Solutions Marks Awarded Marker's Comments		
Suggested Solutions C)ii) Equation of the chord PQ =1 $M_{PQ} = \frac{y_2 - y_1}{x_2 - n_1} = \frac{3/p - 3/p}{3p - 3q} = \frac{3(9/p)}{pq(p-q)}$ $= \frac{1}{pq}$ ptq	2.	D gradient
Equation of Pa $y-y_1 = m(x-x_1)$ $y-3p = -\frac{1}{pq}(x-3p)$ $pqy - 3q = -x+3p$ $x+pqy = 3(p+q)$		1) Equation with correct working
(ii) For perpendicular distance $d = \frac{ ax+by+c }{\sqrt{a^2+b^2}} \begin{array}{l} Point (0,0) \\ Inie xc+pqy-3(p) \\ d = \sqrt{5} \end{array}$ $\sqrt{5} = \frac{ 0(1)+o(pq)-3(p+q) }{\sqrt{5}}$	(D) +cq) = 0	must show perpendicular distance formul and substitution. showing zeros.
$5 = \frac{9(p+q)^2}{1+p^2q^2}$ $5(1+p^2q^2) = 9(p+q)^2$ (iii) Midpoint $(3(p+q))^3/p+3/q$	(3)	O Mid point
pq pq pq pq pq pq pq pq	2 - 4	
$1 + \frac{3c^2}{42} = \frac{43c^2}{6}$		1 correct ansi

J:\Maths\Suggested Mk solns template.doc $\frac{x^2}{5} = \frac{4x^2}{5}$ $\frac{5x^2}{4x^2-5}$

* All substitutions needed to be sequential evad easily followed

Suggested Solutions 20 14 1K1A	Marks	Marker's Comments
) Let x = 10 52 sin 0		
· dn= 1052 cos 0		
" dn = 105z coso do"		
		brene-lly well
When $x = 10$, $\sin \theta = 1/2$, $\theta = 1/4$ $x = -10$, $\sin \theta = -1/2$, $\theta = -1/4$		Generally well
$\chi = -10$, $\chi = -10$		
$-\int_{10}^{10} \int_{200-x^2}^{200-200} dx = \int_{10}^{10/4} \int_{200-200}^{10/2} \int_{10}^{10/2} \int_{10/2}^{10/2} \int_{$	1	Some people used even
- 1/4		reduce work
= 200 (cos 20 do		at substitution.
-7/4		
= 100 (1+cos 20 do	1	
J.7%.		
$= 100 \left[0 + \frac{\sin 20}{2}\right]^{-\frac{1}{12}}$		
2 - 17/4		
$= 100 \left[\frac{\pi}{4} + \frac{1}{2} - \left(-\frac{\pi}{4} - \frac{1}{2} \right) \right]$		
= 100 (至+1)		
= 100 + 50TT IT	1	
c		A diagram wa
1052		taily essention
		to explain
-1052 -10 0 10 1052		this answer,

2014 TRIAL X2 MATHEMATICS: Question 1.3.		p2 8 4
Suggested Solutions	Marks	Marker's Comments
9 stegral represents the area BACD. i.e. $\triangle ABO + \triangle OCO + Sector OCA$ By Pythagoras, $AB = 10$. Area $\triangle ABO = Area \triangle OCO = \frac{1}{2} \times 10 \times 10$ $= \frac{50}{10}$ $\triangle CAB is isosceles and \overline{1} at B ACAB = \frac{1}{2} \times 10 \times 10 = \frac{1}{2} \times 10 \times 10 Area sector is (10\overline{52}) \times 11 = 50\pi = 100 + 50\pi = 100 + 50\pi$	1	Only I make so all issues had to be addressed. alternative version possible with rectangle to segment.
C) -10 × 100 × 100 × Dn N.B. Only a half shell as rotated by 180°. TI (100-x)	1	One mark for recognising the half cylinder (180°)
$\Delta V = TT(100-x)y\Delta x$ $= TT(100-x)\sqrt{200-x^2}\Delta x$ $= TT(100-x)\sqrt{200-x^2}\Delta x$ $= T\int_{00}^{10} 100 \int_{000-x^2}^{10} dx - T\int_{000-x^2}^{10} x\sqrt{200-x^2}dx$ But the second integral is of		for setup i.e. diagram(s) $\Delta V \stackrel{:}{=} V = \lim_{\Delta x \to 0} \sum_{\text{etc.}} \text{etc.}$ Too many lost this mark

2014 TRIAL X2 MATHEMATICS: Question 13. Suggested Solutions		1304
Suggested Solutions	Marks	Marker's Comments
an odd function between symmetric limits, i.e. equals 0. V= 100TT \(\sum_{200-x^2} dx \) = 100TT \((100 + 50TT) \) using (i) = 80763.94. cm = 0.081 m ³ (to 25.F.)	1	Too many people lost this last mark, Highlighing potential traps when reading question.
b)i) Points 8) intersection of the two graphs will provide the roots of, $\beta = \delta$. (as the x values of interes. Substitute $y = \frac{1}{\lambda}$ into $y = x^2 - 4$ $\frac{1}{\lambda} = x^2 - 4$ $1 = x^3 - 4x$ ($x \neq 0$) i.e. $x^3 - 4x - 1 = 0$ ii) We need $y = x^2 \Rightarrow x = 5y$ Sub. into equation $y = 5y - 1 = 0$		Substitution alone was NOT enough. The mention of the word "intersection or agriculant gravanteed the mark.
$y(y^2-8y+16)=1$ (Square both sides) $y^3-8y^2+16y-1=0$	1	No real need to change bar to x's,

LO14 TRIAL X2 MATHEMATICS: Question 13 Suggested Solutions	Marks	Marker's Comments
iii) From egn in (ii),		Many people
Substitute Z = \frac{1}{y} \Rightarrow y = \frac{1}{2}	1	Many people started from
$\frac{1}{Z^3} - \frac{8}{Z^2} + \frac{16}{Z} - 1 = 0$		(i) with z = Jx
$z^3 - 16z^2 + 8z - 1 = 0$	1	First mark for equivalent po as in (ii).
v) The co. ordinates of P are given		as in (ii).
by (d, 1), say.		
Then OP = X - Le (Pythagorag		
Similarly OQ = B+ 1, say		
OR = 82 1 1, say.		
. OP + OQ + OR = (x + p + +2) + (1 + 1 + 1)) 1	
= 8 + 16		
(Sum of roots in equations from i)/e(ii))	
= 24 (units)	1	

MATHEMATICS: Question. 4. Suggested Solutions	Marks	Marker's Comments
S(1) <-24 → h @ 124	3	1 reasoning
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	onship	1) answer with correct working
When h = 0 a = 30 -24 4. a = -3 h + 30		Could also be done with similargles.
ii) Simenly for minor asus	(3)	Imangles. $D b = 20 - \frac{h}{3}$
b = (13-30) + 20		Q= 4 h + 6 =
FICO 5 TTO - TTR -	2	O correct answer with working
11) J = A 3	se O	Correct answer.

MATHEMATICS: Question		
Suggested Solutions	Marks	Marker's Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(a) ·	1 Gorexpansion
$= \frac{2}{2} \left[\frac{2}{2} \left(\frac{1}{2} \right)^{2} + \frac{2}{2} \left(\frac{1}$]*	O cancelling odd powers, adding even power and showing no series is only even powers and
11) 2B's and 2 other letters (AOTO) Choose 2 places for 2B's = 4 Other 3paces 2x 2 choices = 22 Total 42 2	0	n krms. 2 krms. Correct description
Etc. " " D. 2	(3)	1) for full explanation of series
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	O sub I=2 into eqn mili)
10 to 1 = 10 12 + 10 2	2 + 7	om (1) oc=2.

Suggested Solutions	Marks	Marker's Comments
B Let ot-l B	4	
CA C NOTES	6	
tab x = ot b cot x = ob la sot p = oc la cot p = oc		
many methods D as BJ = JG and 1806=90°		
BC is a diameter of circle through B, 0 and 6 BI = $IC = 0I$ (radii of circle OI = $IC = 0I$)).	D stating OJ=280 D with reasons D Pythagoras ste D correct answer with working
$\int_{2}^{\infty} \ln \cot \theta = \ln \cot^{2} x + \cot^{2} \beta$		O correct answer with working
Coto = 1 Jobs + Lots Allemature Let 1850 = \$ 0	md BJ	
$h^2 \omega f^2 x = h^2 \omega f^2 o + 2c^2 - 2h \omega f \cdot \partial x \cdot \partial $	50 (180-4)	(2) cos Rule statements
h' (cot's + cot's) = 2h' cot's + 2x' - h' cot's + h' fotos - h (cot's + cot's) = 2h cot's + a (h' cot's	goios) + hrbts	
$\frac{1}{2}\cot\theta = \frac{1}{2}\left(\omega + x + \cot^2\beta\right)$		1 answer with

a)
$$I_n = \int_0^2 (1-\frac{1}{x})^n dx$$
 for $n = 1, 2, 3, ...$

$$=\int_{1}^{2}\frac{(6c-1)^{n}}{x^{n}}dx$$
 Let

$$= \frac{(x-1)^{n+1}}{(n+1)^{2}} - \int_{1}^{\infty} \frac{(x-1)^{n+1}}{n+1} \frac{-n}{x^{n+1}} dx$$

$$= \frac{1}{(n+1)^{2^{n}}} + \frac{n}{n+1} \int_{1}^{2} \frac{(x-1)^{n+1}}{x^{n+1}} dx$$

$$\frac{\overline{In}}{n} = \frac{\overline{In-1}}{n-1} - \frac{1}{(n-1)n \cdot 2^{m-1}} \quad \left(\begin{array}{c} \text{from } i \\ \text{replace not } tyn \end{array} \right)$$

$$\frac{I_{n-1}}{n-1} = \frac{I_{n-2}}{n-2} - \frac{1}{(n-2)(n-1)} 2^{n-2}$$

$$\frac{1}{n+1} = \frac{1}{1 - \left[\frac{1}{1 \cdot 2 \cdot 2} + \dots + \frac{1}{(n-2)(n-1)} \frac{2^{n-2}}{2^{n-1}} + \frac{1}{n(n+1)^{\frac{n}{2}}} \right]}$$

$$(77) I_1 = \int_1^2 (1-\frac{1}{x}) dx = x - l_1(x) \Big|_1^2 = 2 - l_1 2 - (1-l_1) \Big|_1^2 = 1 - l_1 2$$

$$\frac{1}{11} \sum_{r=1}^{n} \frac{1}{r(r+1)2^{r}} = I_{1} - \frac{I_{n+1}}{n+1} = 1 - \ell_{n} 2 - \frac{I_{n+1}}{n+1}$$

Let $u = x^{-n}$ $u' = \frac{-n}{x^{n+1}}$ $u = (1-\frac{1}{x})^{n+1}$ dv = dx $V = (x-1)^n \quad V = (x-1)^{n+1} \quad du = (n+1)(1-\frac{1}{x})^n (x^2) dx, \quad v = x$ $man_2 \quad m \geq takes \text{ here}$

1 m

In

1 m

There are other alternotion

must show at least 3 expansions there

1 m

1 m

$$0 < \int_{0}^{2} (1 - x)^{n} dx < 1$$

$$0 < In < 1$$

$$Inti < In$$

$$0 < Inti < 1$$

$$0 < Inti < hti$$

b)
$$2^{7}=1$$

$$2^{7}-1=(2-1)(+2+2^{4}+2^{3}+...+2^{6})=0$$
Since d is a complex root with smalles + argument

$$\theta + \phi = (\lambda + \alpha^{2} + \alpha^{4}) + (\lambda^{3} + \lambda^{7} + \lambda^{6}) - 1$$

$$= (1 + \lambda + \lambda^{3} + \lambda^{4} + \lambda^{7} + \lambda^{6}) - 1$$

$$= 0 - 1$$

$$G \phi = (x+a'+x')(x'^2+a'+x'^6)$$

$$= x''+x'+x' + x'' +$$

must mention of in root x = -1 must show then like In term of in I m v. poorly done. alternative see state v I m well done

(from alove) 1+ u+i'- + + + = 0 well done

Let Z=viso

27= 10076 (De Moins 24)

Y70076=1=17000

.. v=1, 0=2nT neJ

Rts of Z=1 are

1750=1, (i) (a) (a) (f) (x) (c) (f) (x3)

(7) 37(x) (3) (2) (x) (x) (x)

Sun y Rts = 1+ cis2= + cis4= + (3) 4 03 87 + 63 107 + 63 129

. (+ a + d +) +(B + x + d) = -1 #

 $(ii) \quad \chi^1 + \chi + 1 = 0$

x=-1+,5

Im (t) = Im [sin 27 + sin 47 + sin 87]>0

·· 0 = -1+25, $\phi = -1-2.5$

(777) Re(G)= Los 2 + cos 4 + cos 3 = - 2

lut in 8 = - in = 1700 (m(T+6)=-cof

11 四等+四等-四等=-主

Prove L', 2 2 2 x are also roots

must relate. x, x, x, x, +, x + ujether as routs

Im

Im

Im will done

In very few can explain why 0 = -1+:5

1 m

must explain

Ext 2 TRIAL 2014 Q16

ai)
$$\theta = 2\phi$$
 (centre at centre twice apple at circumference)

$$\dot{\phi} = \frac{\dot{\phi}}{2} = \frac{\pi}{2} \text{ rad Ison (angular vel about A) Im$$

$$\beta = \pi - \Xi - \Phi$$
 (angle sum of s APB)
$$\beta = \pi - \Phi = -\Xi \operatorname{rad}(\operatorname{su} \operatorname{Cangular} \operatorname{vel about } B)$$

when
$$\theta = \overline{2}$$

Alternatively using chain rule

$$\frac{da}{d\theta} = \frac{-cn(\theta+d)}{cn\theta cnd - si-\theta si-a-2cna} = \frac{-cn(\Xi+d)}{cn\Xi(a-si-\Xi si-a-2cna)} Im$$

$$\frac{dA}{d\theta} = \frac{\sin d}{-\sin d - 2\cos d} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}}$$

must mention sope 8 sine rule many thought LOPE =]

In for sub all below

$$\hat{\theta} = \pi$$

6216

Casel max vel F &

Vertically New 30 = 10 m + F sin 30

N 53 = 10 m + E2

N/3 - 10)= 10 m

Hurigartally my = F co 30 + N s = 3

my = Fig + N

N[1+5]= mv

(2) + (1)

V~ = 200 (10+53) = 143.77

MAR 11.99 mls (V>0)

Care 2 min wel F1

Replace F by - F in the where calculation

10m = N(1 + 1)

m= N(1-5)

(3) ÷ (0)

V= 90.2189 --

V= 9.5 m/, (V>0)

.. 9.5 ≤ V ≤ 11.99

Im Smark well F & mr. well F &

In diagram with right forces

I'm vertical forces

I'm horizontal forces

in for subin more al value